A theorem for hypersurfaces of conformally flat space
نویسندگان
چکیده
منابع مشابه
Interpreting a conformally flat pure radiation space - time
A physical interpretation is presented of the general class of conformally flat pure radiation metrics that has recently been identified by Edgar and Ludwig. It is shown that, at least in the weak field limit, successive wave surfaces can be represented as null (half) hyperplanes rolled around a two-dimensional null cone. In the impulsive limit, the solution reduces to a pp-wave whose direction...
متن کاملThe Symmetry Group of Lamé’s System and the Associated Guichard Nets for Conformally Flat Hypersurfaces
We consider conformally flat hypersurfaces in four dimensional space forms with their associated Guichard nets and Lamé’s system of equations. We show that the symmetry group of the Lamé’s system, satisfying Guichard condition, is given by translations and dilations in the independent variables and dilations in the dependents variables. We obtain the solutions which are invariant under the acti...
متن کاملConformally invariant bending energy for hypersurfaces
The most general conformally invariant bending energy of a closed four-dimensional surface, polynomial in the extrinsic curvature and its derivatives, is constructed. This invariance manifests itself as a set of constraints on the corresponding stress tensor. If the topology is fixed, there are three independent polynomial invariants: two of these are the straighforward quartic analogues of the...
متن کاملClosed Hypersurfaces of Prescribed Mean Curvature in Locally Conformally Flat Riemannian Manifolds
We prove the existence of smooth closed hypersurfaces of prescribed mean curvature homeomorphic to S for small n, n ≤ 6, provided there are barriers. 0. Introduction In a complete (n+1)-dimensional manifold N we want to find closed hypersurfaces M of prescribed mean curvature. To be more precise, let Ω be a connected open subset of N , f ∈ C(Ω̄), then we look for a closed hypersurface M ⊂ Ω such...
متن کاملHypersurfaces of a Sasakian space form with recurrent shape operator
Let $(M^{2n},g)$ be a real hypersurface with recurrent shapeoperator and tangent to the structure vector field $xi$ of the Sasakian space form$widetilde{M}(c)$. We show that if the shape operator $A$ of $M$ isrecurrent then it is parallel. Moreover, we show that $M$is locally a product of two constant $phi-$sectional curvaturespaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyoto Journal of Mathematics
سال: 1955
ISSN: 2156-2261
DOI: 10.1215/kjm/1250777184